首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   12篇
  国内免费   37篇
林业   4篇
农学   35篇
基础科学   11篇
  117篇
综合类   65篇
农作物   15篇
水产渔业   1篇
畜牧兽医   29篇
园艺   3篇
植物保护   74篇
  2024年   3篇
  2023年   16篇
  2022年   23篇
  2021年   16篇
  2020年   22篇
  2019年   10篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   16篇
  2014年   22篇
  2013年   29篇
  2012年   32篇
  2011年   21篇
  2010年   21篇
  2009年   27篇
  2008年   4篇
  2007年   15篇
  2006年   15篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有354条查询结果,搜索用时 127 毫秒
1.
宁夏原州区生态移民村生境景观连接度变化及其驱动因素   总被引:1,自引:1,他引:0  
[目的]分析生态移民土地利用过程中生境景观连接度变化及其驱动因素,为生态移民的生态风险管理及移民可持续性提供科学依据。[方法]以宁夏原州区"十二五"时期4个生态移民村(丰泽、金轮、和润及泉港)为例,基于2016年高分影像数据,同时参考移民前谷歌地球2010年数据和第二次全国土地调查数据(2010年),经野外GPS校验,通过计算障碍影响指数和生境景观连接度指数,分析生态移民村土地利用生境景观分异。[结果]丰泽村和金轮村的生境景观连接度呈下降态势,和润村和泉港村呈上升态势。4个生态移民村的变化趋势明显,但极高连接度和高连接度比例很小。生态移民村生境景观变化驱动力主要为人为因素,建设用地占用耕地、园地普遍,其中泉港村与和润村建设用地面积年均增长率分别高达27.49%和21.28%,同时金轮村、和润村、泉港村无后备土地资源,生态压力突出。[结论] 4个生态移民村人口密度增大导致建设用地占用耕地明显,生态用地被分割,移民的非农活动比重大造成耕地撂荒,景观破碎化和孤岛化现象明显,生境景观呈现出不稳定状态,生态压力增加。  相似文献   
2.
3.
为提高马铃薯品种(系)地上部分糖苷生物碱(SGAs)的含量,增强其抗逆性并改良块茎的品质。克隆了马铃薯茄啶鼠李糖基转移酶基因(sgt3)cDNA和1,5–二磷酸核酮糖羧化酶小亚基基因启动子(rbcS P);对sgt3亚细胞定位预测显示,该蛋白不具有叶绿体转运肽、线粒体导肽和分泌信号肽序列,推测可能位于细胞质;将克隆的sgt3 cDNA片段及rbcS重组到pCEPSP载体上,构建了具有草甘膦抗性标记的绿色组织特异表达sgt3基因植物表达载体。通过农杆菌介导法对马铃薯品种‘陇薯3号’和‘夏波蒂’进行转化,共获得了12株抗草甘膦的阳性转基因植株。对转基因植株的目的基因表达水平和SGAs含量分析发现,地上部sgt3基因相对表达量较未转化植株提高1.3~3.0倍,SGAs含量增加20%~37%,而转基因植株的块茎中SGAs含量变化不显著。本研究的结果为进一步培育枝、叶中高SGAs而块茎中低SGAs的马铃薯抗性品种提供了理论依据。  相似文献   
4.
施肥对灌漠土作物产量、土壤肥力与重金属含量的影响   总被引:1,自引:0,他引:1  
有机物还田是提升土壤肥力的主要措施,但也存在造成土壤金属污染的潜在风险。为查明不同有机物还田对土壤质量及作物产量的影响,本文通过长期定位试验,研究了无肥对照、常规施化肥(氮磷配施)以及70%常规化肥与牛粪、沼渣、污泥、鸡粪、菌渣和猪粪配施对土壤理化性状、有机碳和氮的固存率、氮磷钾活化系数、作物产量及重金属含量的影响。结果表明:牛粪、沼渣、污泥、菌渣、鸡粪和猪粪与70%化肥配施虽作物产量与常规施化肥相似,但6种有机物处理土壤有机质、全氮和碱解氮含量都较常规施化肥处理显著增加,污泥、鸡粪和猪粪处理土壤全磷与速效磷含量较常规施化肥处理显著增加,而且牛粪、沼渣、鸡粪和猪粪处理的速效钾、土壤磷活化系数和土壤钾活化系数较常规施化肥处理也显著提升。牛粪、沼渣、污泥、菌渣、鸡粪和猪粪处理土壤有机碳固存率为36.42%~71.61%,较常规施化肥处理都显著提高;而其氮固存率为6.47%~49.44%,仅有菌渣处理与常规施化肥处理差异不显著,而其他处理较常规施化肥处理显著增加。长期施鸡粪和菌渣处理的土壤铜含量较常规施化肥处理显著增加,增加量分别为4.17mg·kg~(-1)和14.2mg·kg~(-1);而污泥、鸡粪和菌渣处理的土壤锌含量较常规施化肥处理显著增加,增加量分别为13.53 mg·kg~(-1)、22.60 mg·kg~(-1)和49.73mg·kg~(-1)。综上,等有机质(4 500kg×hm~(-2))的牛粪、沼渣、污泥、菌渣、鸡粪和猪粪可替代30%氮磷肥,作物产量不受影响;不同有机物培肥土壤效果为污泥、鸡粪和猪粪优于牛粪和沼渣,而沼渣的培肥效果略差。为保证土壤环境质量稳定不恶化,种植小麦时有机物铜和锌的年携入量应分别低于53.01g×hm~(-2)和221.30 g×hm~(-2),而种植玉米时应分别低于153.40 g×hm~(-2)和347.04 g×hm~(-2)。  相似文献   
5.
苜蓿原生质培养及体细胞杂交技术的应用   总被引:1,自引:1,他引:0  
阐述了植物原生质体培养和体细胞杂交技术以及苜蓿Medicago spp.体细胞胚胎发生特性,综述了该技术在苜蓿育种研究中的应用状况,同时介绍了我国苜蓿研究领域原生质体培养和体细胞杂交技术的研究进展.  相似文献   
6.
A field experiment was conducted in 2003 and 2004 growing seasons to evaluate the effects of regulated deficit irrigation on yield performance in spring wheat (Triticum aestivum) in an arid area. Three regulated deficit irrigation treatments designed to subject the crops to various degrees of soil water deficit at different stages of crop development and a no-soil-water-deficit control was established. Soil moisture was measured gravimetrically in the increment of 0–20 cm every five to seven days in the given growth periods, while that in 20 increments to 40, 40–60, 60–80, and 80–100 cm depth measured by neutron probe. Compared to the no-soil-water-deficit treatment, grain yield, biomass, harvest index, water use efficiency (WUE), and water supply use efficiency (WsUE) in spring wheat were all greatly improved by 16.6–25.0, 12.4–19.2, 23.5–27.3, 32.7–39.9, and 44.6–58.8% under regulated deficit irrigation, and better yield components such as thousand-grain weight, grain weight per spike, number of grain, length of spike, and fertile spikelet number were also obtained, but irrigation water was substantially decreased by 14.0–22.9%. The patterns of soil moisture were similar in the regulated deficit treatments, and the soil moisture contents were greatly decreased by regulated deficit irrigation during wheat growing seasons. Significant differences were found between the no-soil-water-deficit treatment and the regulated soil water deficit treatments in grain yield, yield components, biomass, harvest index, WUE, and WsUE, but no significant differences occurred within the regulated soil water deficit treatments. Yield performance proved that regulated deficit irrigation treatment subjected to medium soil water deficit both during the middle vegetative stage (jointing) and the late reproductive stages (filling and maturity or filling) while subjected to no-soil-water-deficit both during the late vegetative stage (booting) and the early reproductive stage (heading) (MNNM) had the highest yield increase of 25.0 and 14.0% of significant water-saving, therefore, the optimum controlled soil water deficit levels in this study should range 50–60% of field water capacity (FWC) at the middle vegetative growth period (jointing), and 65–70% of FWC at both of the late vegetative period (booting) and early reproductive period (heading) followed by 50–60% of FWC at the late reproductive periods (the end of filling or filling and maturity) in treatment MNNM, with the corresponding optimum total irrigation water of 338 mm. In addition, the relationships among grain yield, biomass, and harvest index, the relationship between grain yield and WUE, WsUE, and the relationship between harvest index and WUE, WsUE under regulated deficit irrigation were also estimated through linear or non-linear regression models, which indicate that the highest grain yield was associated with the maximum biomass, harvest index, and water supply use efficiency, but not with the highest water use efficiency, which was reached by appropriate controlling soil moisture content and water consumption. The relations also indicate that the harvest index was associated with the maximum biomass and water supply use efficiency, but not with the highest water use efficiency.  相似文献   
7.
Excessive tillage compromises soil quality by causing severe water shortages that can lead to crop failure. Reports on the effects of conservation tillage on major soil nutrients, water use efficiency and gain yield in wheat (Triticum aestivum L.) and maize (Zea mays L.) in rainfed regions in the North China Plain are relatively scarce. In this work, four tillage approaches were tested from 2004 to 2012 in a randomized study performed in triplicate: one conventional tillage and three conservation tillage experiments with straw mulching (no tillage during wheat and maize seasons, subsoiling during the maize season but no tillage during the wheat season, and ridge planting during both wheat and maize seasons). Compared with conventional tillage, by 2012, eight years of conservation tillage treatments (no tillage, subsoiling and ridge planting) resulted in a significant increase in available phosphorus in topsoil (0–0.20 m), by 3.8%, 37.8% and 36.9%, respectively. Soil available potassium was also increased following conservation tillage, by 13.6%, 37.5% and 25.0%, and soil organic matter by 0.17%, 5.65% and 4.77%, while soil total nitrogen was altered by −2.33%, 4.21% and 1.74%, respectively. Meanwhile, all three conservation tillage approaches increased water use efficiency, by 19.1–28.4% (average 24.6%), 10.1–23.8% (average 15.9%) and 11.2–20.7% (average 15.7%) in wheat, maize and annual, respectively. Additionally, wheat yield was increased by 7.9–12.0% (average 10.3%), maize yield by 13.4–24.6% (average 17.4%) and rotation annual yield by 12.3–16.9% (average 14.1%). Overall, our findings demonstrate that subsoiling and ridge planting with straw mulching performed better than conventional tillage for enhancing major soil nutrients and improving grain yield and water use efficiency in rainfed regions in the North China Plain.  相似文献   
8.
The Chinese Central government's policy to re-vegetate large areas of the Loess Plateau is currently being rapidly implemented at the provincial, prefecture, county, township, and village levels of government. Managers at these five levels of government need access to information to assist them to plan the land use change prior to performing on-ground activities. To this end, the suitability of 38 predominately native species in the 113,000 km2 Coarse Sandy Hilly Catchments (CSHC) has been mapped at a 100 m resolution. In this data-sparse region, this was achieved by using a five-variable spatial overlay approach as we were able to readily access the required environmental variables and rule-set defining the species’ requirements (or tolerances). As the rules did not consider optimal growth they were possibly ‘too inclusive’, so the spatial extent of areas suggested for re-planting was refined by defining ‘target areas’ for trees, shrubs and grasses based on precipitation, aspect, landform, and slope. In the land-use planning criteria developed here we suggest that hill-slopes and gullies with slopes greater than or equal to 15° (defined from a 100 m resolution DEM) be left for natural succession. Due to lateral flow of water, sediment and nutrients from these steep slope and gullies, further prioritising re-vegetation target areas to the zone adjacent to and down slope from these steep portions of the landscape reduces sediment entering the river network with a minimal decrease of regional stream flow. These two functions (mapping species suitability and locating where priority and target re-vegetation activities should be undertaken) are available at a 100 m resolution for the entire CSHC by accessing a bilingual decision support tool called ReVegIH (Re-Vegetation Impacts on Hydrology). Finally, an ecohydrological model was used to simulate changes in average annual stream flow originating from the CSHC based on implementing the ‘target’ and ‘priority’ area re-vegetation activities within the constraints of two land limits.  相似文献   
9.
Higher irrigation quota for conventional farming causes substantial conflicts between water supply and demand in agriculture, and wind erosion near soil surface is one of the major causes of farmland degradation and desertification in arid areas. This research investigated the effect of the amounts of irrigation in combination with tillage practices on soil evaporation (E), water consumption (ET) characteristics, and grain yield performance and water use efficiency (WUE) for wheat (Triticum aestivum L.) intercropped with maize (Zea mays L.) in strip planting in an Oasis region. The field experiment, conducted at Wuwei station during 2008–2010, had two tillage systems (reduced tillage with wheat stubble retention vs. conventional tillage without stubble retention), and three (low, medium, and high) levels of irrigation, in a randomized complete block design. Averaged across three years, soil evaporation with medium and high levels of irrigation was 6.8% and 5.4% greater than that with low level of irrigation, respectively. Total water consumption of wheat/maize crops under the medium and high irrigation levels was 8.5% and 18.5% greater, respectively, than that under low irrigation. However, grain yields were similar under the medium and high levels of irrigation, so was WUE. The effect of tillage on the wheat/maize intercropping was inconsistent across years or among treatments: soil moisture at harvest was 3.0–7.6% greater in the fields with reduced tillage compared with those with conventional tillage in 2008 and 2009, but no difference was found in 2010; the E/ET ratio of reduced tillage was 9% lower than the ratio under conventional tillage in 2008, 3% higher in 2010, but no difference between the two tillage systems in 2009. Across three years, there was a general trend that the WUE of the wheat/maize intercropping system with reduced tillage was greater (by 4–11%) than that with conventional tillage. We conclude that a medium level of irrigation is sufficient to achieve crop yields and WUE equivalent to those under high level of irrigation, provided that a reduced tillage practice is applied to the wheat/maize intercropping in Oasis areas.  相似文献   
10.
【目的】研究筛选对芹菜叶斑病(病菌为:细极链格孢Alternaria tenuissima)具有良好防治作用的药剂。【方法】采用菌丝生长速率法和琼脂片法分别用14种杀菌剂对细极链格孢(A.tenuissima)菌丝和孢子萌发做室内毒力测定并进行田间药效试验。【结果】14种杀菌剂中对病原菌菌丝抑制效果最好的分别为3%甲霜恶霉灵、5%香芹酚、10%苯醚甲环唑、其EC50分别为10.8、19.9、26.2 μg/mL;对孢子萌发抑制效果最好的分别为3%甲霜恶霉灵、25%嘧菌酯、43%戊唑醇,其EC50分别为15.7、29.5、38.7 μg/mL。只有3%甲霜恶霉灵具有最佳的防治效果。防效最好的药剂为3%甲霜恶霉灵和5%香芹酚,其防效分别为96.3%和83.9%。【结论】3%甲霜恶霉灵最适用于田间芹菜叶斑病的防治。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号